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SUMMARY

We show that the weighted bootstrap can be used to detect possible changes in the distribution of random
vectors. We illustrate our method with change-point detection in the monthly precipitation and water
discharges from MaÂ lo RaÂ ztoka. Copyright # 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

JarusÆ kovaÂ (1994) and Gombay and HorvaÂ th (1997) analyzed the monthly averages of water
discharges from NacÆ etõÂ nskyÂ measured during 1951±1990. NacÆ etõÂ nskyÂ is located in the Erzgebirge
mountains and it was expected that the large deforestation in the Erzgebirge mountains may have
changed water discharges from NacÆ etõÂ nskyÂ . JarusÆ kovaÂ (1994) and Gombay and HorvaÂ th (1997)
assumed that the data were from log-normal distribution. Changes in the mean of the log-
transformed data were found. In this paper we are looking for possible changes in the monthly
average water discharges from MaÂ lo RaÂ ztoka and the monthly precipitation measured at the
creek. No parametric form is assumed on the distributions. We discuss two methods to detect
possible changes in the data. The ®rst one is based on empirical distributions, while the second
one uses Kendall's tau. We obtain limit theorems for the test statistics under the `no change' null
hypothesis. In both cases the limits will depend on the unknown underlying distribution, so the
results cannot be applied immediately to analyze the MaÂ lo RaÂ ztoka data. We use the weighted
bootstrap to approximate the distributions of the test statistics.

2. EMPIRICAL DISTRIBUTIONS

Let (X1 , Y1), (X2 , Y2), . . . , (Xn , Yn) be independent random variables with distribution functions
F(1)(x,y), F(2)(x,y), . . . , F(n)(x,y). We wish to test the `no change' null-hypothesis

H0 : F
�1��x; y� � F

�2��x; y� � � � � � F
�n��x; y� for all �x; y� 2 R
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against the alternative

HA : there is an integer k*; 14 k*5 n such that F
�1��x; y� � � � � � F

�k*��x; y�;
F
�k*�1��x; y� � � � � � F

�n��x; y� and F
�k*��x0; y0� 6� F

�k*�1��x0; y0� with some �x0; y0�:

We follow the method of CsoÈ rgoÈ and HorvaÂ th (1997, Section 2.6). We divide the random sample
into two parts {(Xi ,Yi), 14 i4 k}, {(Xi ,Yi), k5 i4 n} and compute the corresponding empirical
distribution functions

F̂i�x; y� �
1

k

X
14 i4 k

IfXi 4 x;Yi 4 yg

and

F̂*k�x; y� �
1

n ÿ k

X
k4 i4 n

IfXi 4 x;Yi 4 yg:

We reject H0 if

T̂n � max
14 k5 n

k�n ÿ k�
n3=2

sup
x;y
j F̂k�x; y� ÿ F*k�x; y� j

is large. Let F denote the common distribution function under H0 . The limit of TÃn is given by

x � sup
04 t4 1

sup
x;y
jGF�x; y; t�j;

where fGF�x; y; t�; �x; y� 2 R2; t 2 Rg is a Gaussian process with EGF(x, y; t) � 0 and EGF(x, y;
t)GF(x

0, y0; t0) � {(t ^ t0)ÿ tt0}{F(x^x0, y^y0)ÿ F(x, y)F(x0, y0)} where a ^ b � min�a; b�: The next
result was obtained by CsoÈ rgoÈ and HorvaÂ th (1997, p. 153).

Theorem 2.1. If H0 holds, then

T̂n !D x �n!1�:

CsoÈ rgoÈ and HorvaÂ th (1997) pointed out that the test based on TÃn has higher power against
change in the middle than against early or late changes. Introducing weight functions we can
increase the power of the tests against early or late changes. For details we refer to CsoÈ rgoÈ and
HorvaÂ th (1997).

Unlike in the case of the univariate empirical process, the distribution of the supremum of the
weak limit of the bivariate empirical process depends on the underlying distribution function
even under the null-hypothesis. The underlying distribution is not speci®ed under the null-
hypothesis, so we cannot use Monte-Carlo simulations to approximate the distribution function
of x. Thus in the applications Theorem 2.1 cannot be used directly to approximate the critical
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values of TÃn . However, we show that the weighted bootstrap can be used to approximate the
distribution of TÃn . We assume that

e1; e2; . . . ; en are independent; identically distributed random variables with var e1

� 1 and Ee41 51 �1�

and

fei; 14 i4 ng and f�Xi;Yi�; 14 i4 ng are independent: �2�

Let

Un�x; y; k� � 1 ÿ k

n

� �
n
ÿ1=2 X

14 i4 k

�ei ÿ êk�IfXi 4 x;Yi 4 yg

ÿ k

n
n
ÿ1=2 X

k5 i4 n

�ei ÿ ê*k�IfXi 4 x;Yi 4 yg; �3�

Un(x, y; 0) � Un(x, y, n) � 0, where

êi �
1

k

X
14 i4 k

ei and ê*k �
1

n ÿ k

X
k5 i4 n

ei:

We use replicas of

~Tn � max
14 k5 n

sup
x;y
jUn�x; y; k�j

to approximate the distribution of TÃn . Our next result shows that TÃn and TÄn have the same limit
distribution.

Theorem 2.2. If H0 , (1) and (2) hold, then

~Tn! x �n!1�:

The proof of Theorem 2.2 will be given in Section 5.
Now the simulation of the critical values of TÃn can be implemented. We generate N

independent copies of the es, {ei,1 , 14 i4 n}, . . . , {ei,N , 14 i4 n} and using {ei,j , 14 i4 n} we
compute Tn,j, 14 j4N. Let

HN;n�t� �
1

N

X
14 i4N

If ~Tn;j 4 tg:

Putting together Theorems 2.1 and 2.2 we obtain that under the null-hypothesis

sup
t
jPfT̂n 4 tg ÿ HN;n�t�j !P 0 �N ^ n!1�: �4�
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Thus we have established that the data-driven simulation gives a uniformly consistent estimator
for the distribution function of TÃn under H0 . In order to have reasonable power when a change
occurred in the data we must consider the behaviour of TÃn and TÄn under the alternative. It turns
our that TÃn and TÄn have di�erent order under HA . The consistency of our procedure will be an
immediate consequence of the following result.

Theorem 2.3. If HA, (1) (2) hold and k* � [ny] with some 05 y5 1, then

T̂n!P 1 �n!1� �5�

and

~Tn � OP�1� �n!1�: �6�

We prove Theorem 2.3 in Section 5.
Putting together Theorems 2.1±2.3 we conclude that the weighted bootstrap gives a rejection

region which has the correct asymptotic signi®cance level under the null-hypothesis and very high
probability of rejection under the alternative. To demonstrate our claim, for any 05 a5 1 we
de®ne zN,n(a) by

zN;n�a� � infft : HN;n�t�5 1 ÿ ag:

Then by (4) we have under H0 that

lim sup
N^n!1

PfT̂n 5 zN;n�a�g4a

while under HA by Theorem 2.3 we conclude

lim
N^n!1

PfT̂n 5 zN;n�a�g � 1:

(We note that if F is continuous, then x has a continuous distribution function and therefore we
have that P{TÃn5 zN,n(a)}! a as N^n! 1 .)

3. KENDALL'S TAU

Kendall's tau is a popular measure of association between random variables. Similarly to the ®rst
section we split the data into two sub-samples after Xk and de®ne

t̂k �
2

k�k ÿ 1�
X

14 i5 j4 k

If�Xi ÿ Xj��Yi ÿ Yj�4 0g

and

t̂*k �
2

�n ÿ k��n ÿ k ÿ 1�
X

k5 i5 j4 n

If�Xi ÿ Xj��Yi ÿ Yj�4 0g:
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We reject H0 , if

M̂n � max
14 k5 n

k�n ÿ k�
n3=2

jt̂k ÿ t̂*kj �7�

is large. We note that MÃ n is a maximally selected weighted di�erence between two bivariate
U-statistics. For some applications ofU-statistics to change-point analysis we refer to CsoÈ rgoÈ and
HorvaÂ th (1988) and Gombay and HorvaÂ th (1995) (cf. also Section 2.4 in CsoÈ rgoÈ and HorvaÂ th
1997). Our ®rst result is the limit distribution of MÃ n and H0 .

Theorem 3.1. If H0 holds, then

M̂n!D s sup
04 t4 1

jB�t�j �n!1�

with some s � s(F), where {B(t), 04 t4 1} stands for a Brownian bridge.

Since s � s(F) depends on the unknown F it is di�cult to estimate it from the sample. We use
again the weighted bootstrap to approximate the distribution of MÃ n . Let

~Un�k� � 2n
ÿ1=2 n ÿ k

kn

X
14 i;j4 k

(
�ei ÿ êk�I f�Xi ÿ Xj��Yi ÿ Yj�4 0g

ÿ k

n�n ÿ k�
X

k5 i;j4 n

�ei ÿ ê*k�If�Xi ÿ Xj��Yi ÿ Yj�4 0g
)

and

~Mn � max
14 k5 n

j ~Un�k�j:

Theorem 3.2. If H0 holds, then

~Mn!D s sup
04 t4 1

jB�t�j �n!1�;

where s � s(F) is from Theorem 3.1 and {B(t), 04 t4 1} stands for a Brownian bridge.

Putting together Theorems 3.1 and 3.2 we see that the weighted bootstrap gives a consistent
estimator for the distribution function ofMÃ n under H0 when the scheme discussed in Section 2 is
used. The consistency of the test procedure can be discussed similarly to Theorem 2.3. We note
that using Kendall's tau we are checking if the parameter P{(Xiÿ Xj)(Yiÿ Yj)4 0} is the same
for the ®rst k and the last nÿ k observations for each k, 14 k5 n.

4. APPLICATIONS AND SIMULATIONS

The MaÂ lo RaÂ ztoka data consist of 36 pairs of monthly averages of water discharges and
precipitations for each months. We considered the measurements for October. Figure 1 is the
graph of Vn(k) � nÿ3/2k(nÿ k)supx,y jFÃk(x, y)ÿ F*

k(x, y) j for this data set. We used standard
normal random variables to generate the bootstrapped statistics. The bootstrap procedure was
repeated N � 1000 times. One of the graphs of the simulated supx,y jUn(x, y; k) j is given in
Figure 2. No signi®cant change in the data was found at 1 per cent signi®cance level.
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We also computed t̂k and t̂*k for the MaÂ lo RaÂ ztoka data. Figure 3 is the graph of Rn(k) � nÿ3/
2k(nÿ k) j t̂kÿ t̂*k j for October. We used again standard normal weights in the bootstrap and the
simulations were repeated N � 1000 times. A typical graph of UÄn(k) is given in Figure 4. No
signi®cant change was found at 1 per cent signi®cance level.

We repeated our procedures for all months. No signi®cant changes were found at 1 per cent
signi®cance levels.

A small simulation study was performed to compare the approximations for the distribution
function of MÃ n provided by Theorem 3.1 and the bootstrap method in Theorem 3.2. If H0 holds
and X1 and Y1 are independent, then s � 1/3 in Theorems 3.1 and 3.2. We generated n � 50
independent pairs of independent standard normal random variables. Using again standard
normal weights and N � 1000 replicas the bootstrap approximation was computed for
P{MÃ 504 t}. Figure 5 has the bootstrap approximation and P{sup04x41 jB(x) j 4 3t}.

5. PROOFS

We recall that F(x, y) denotes the common distribution underH0 . We can assume without loss of
generality (cf. Wichura 1973) that F(x,y) has uniform marginals on [0, 1]. Let m � Eei and

Zn�x; y; t� � n
ÿ1=2 X

14 i4 nt

�ei ÿ m�IfXi 4 x;Yi 4 yg:

Figure 1. The graph of Vn(k)
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Lemma 5.1: If H0 , (1) and (2) hold, then

Zn�x; y; t� !D�0;1�
3

WF�x; y; t�;

where {WF(x, y; t), 04 x, y, t4 1} is a Gaussian process with EWF(x, y; t) � 0 and EWF(x, y;
t)WF(x

0, y0; t0) � (t^t0)F(x^x0, y^y0).
Proof: We apply Theorem 6 of Bickel and Wichura (1971). Let C and D be neighboring blocks in
the unit square in the sense of Bickel and Wichura (1971). They showed, that there is a ®nite,
continuous measure � on the unit square such that

E�If�Xi;Yi� 2 Cg�2 4 ��C�

and

E�IfXi;Yi� 2 Cg�2�IfXi;Yi� 2 Dg�2 4 3��C���D�:

Hence using (1) and (2) we obtain that

E��ei ÿ m�If�Xi;Yi� 2 Cg�2 � E�ei ÿ m�2E�IfXi;Yi� 2 Cg�2 4 ��C�

Figure 2. The graph of supx,y jUn(x, y; k) j using standard normal weights
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Figure 3. The graph of Rn(k)

Figure 4. The graph of supx,y jUÄn(x, y; k) j using standard normal weights

Copyright # 1999 John Wiley & Sons, Ltd. Environmetrics, 10, 725±736 (1999)

732 E. GOMBAY AND L. HORVAÂ TH



and

E��ei ÿ m�If�Xi;Yi� 2 Cg�2��ei ÿ m�If�Xi;Yi� 2 Dg�2

4E�ei ÿ m�4E�If�Xi;Yi� 2 Cg�2�If�Xi;Yi� 2 Dg�2

4 3E�e1 ÿ m�4��C���D�:

Lemma 5.1 follows immediately from Theorem 6 of Bickel and Wichura (1971).

Proof of theorem 2.2: The process Un(x, y; k) does not depend on m so we can assume that m � 0.
First we write

Un�x; y; k� � 1 ÿ k

n

� � X
14 i4 k

eiIfXi 4 x;Yi 4 yg ÿ 1 ÿ k

n

� �
F�x; y�nÿ1=2

X
14 i4 k

ei

ÿ k

n
n
ÿ1=2 X

k5 i4 n

eiIfXi 4 x;Yi 4 yg � k

n
F�x; y�nÿ1=2

X
k5 i4 n

ei

� 1 ÿ k

n

� �
F�x; y� ÿ 1

k

X
14 j4 k

IfXj 4 x;Yj 4 yg
 !

n
ÿ1=2 X

14 i4 k

ei

ÿ k

n
F�x; y� ÿ 1

n ÿ k

X
k5 j4 n

IfXj 4 x;Yj 4 yg
 !

n
ÿ1=2 X

k5 i4 n

ei: �8�

Figure 5. The graphs of the bootstrap approximation for P{MÃ 504 t} (-j-), and P{sup[04x41 jB(x) j 4 3t} (-r-)
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By the law of the interated logarithm we have

max
14 k5 n

sup
04x;y4 1

���� 1 ÿ k

n

� �
F�x; y� ÿ 1

k

X
14 j4 k

IfXj 4 x;Yj 4 yg
 !

n
ÿ1=2 X

14 i4 k

ei

����
� OP�nÿ1=2log log n� �9�

and

max
14 k5 n

sup
04x;y4 1

���� kn F�x; y� ÿ 1

n ÿ k

X
k5 j4 n

IfXj 4 x;Yj 4 yg
 !

n
ÿ1=2 X

k5 i4 n

ei

����
� OP�nÿ1=2log log n�: �10�

Hence Lemma 5.1 yields

Un�x; y; nt� !D�0;1�3 GF�x; y; t�;

where

GF�x; y; t� � �1 ÿ t�fWF�x; y; t� ÿ F�x; y�WF�1; 1; t�g ÿ tfWF�x; y; 1� ÿWF�x; y; t�
ÿ F�x; y��WF�1; 1; 1� ÿWF�1; 1; t��g: �c�

It is easy to see that GF(x, y; t) is Gaussian with EGF�x; y; t� � 0 and EGF�x; y; t�GF�x0; y0; t0�
� �t^t0ÿtt0��F�x^x0; y^y0�ÿF�x; y�F�x0; y0��:
Proof of theorem 2.3: CsoÈ rgoÈ and HorvaÂ th (1997, Section 2.6) proved (5).

Since (8)±(10) hold under the alternative, it is enough to show that

sup
04 x;y;t4 1

jZn�x; y; t�j � OP�1�: �11�

First we note that

sup
04 x;y;t4 1

jZn�x; y; t�j4 sup
14 k4 k*

sup
x;y

n
ÿ1=2

���� X
14 i4 k

�ei ÿ m�IfXi 4 x;Yi 4 yg
����

� sup
k*4 k4 n

sup
x;y

n
ÿ1=2

���� X
k5 i4 n

�ei ÿ m�IfXi 4 x;Yi 4 yg
����:

Following the proof of Lemma 5.1 one can establish that {nÿ1/2S14i4nt) (eiÿ m)I{Xi4 x,Yi4 y},
04 t4y, 04 x, y4 1} and {nÿ1/2Snt4i4n(eiÿ m)I{Xi4 x, yi4 y}, y4 t4 1, 04 x, y4 1}
converge weakly. Hence (11) is proven.

Copyright # 1999 John Wiley & Sons, Ltd. Environmetrics, 10, 725±736 (1999)

734 E. GOMBAY AND L. HORVAÂ TH



Proof of Theorem 3.1: The result is a bivariate version of Theorem 1.1 of Gombay and HorvaÂ th
(1995) [cf. also Theorem 2.4.7 in CsoÈ rgoÈ and HorvaÂ th (1997)]. Using Hall (1979) we get that

max
14 k5 n

k�n ÿ k�
n3=2

�t̂k ÿ t̂*k� ÿ 2

Z Z
If�x1 ÿ x2��y1 ÿ y2�4 0g

����
dF�x1; y1� d

k�n ÿ k�
n3=2

�F̂k�x2; y2� ÿ F*k�x2; y2��
� ����� � OP�1�;

�12�

and therefore without any modi®cation one can copy the proof of Theorem 1.1 of Gombay and
HorvaÂ th (1995). The details are omitted.

Proof of Theorem 3.2: The proof is rather technical and lengthy so we will sketch the major steps
only. First we note that

~Un�k� � 2n
ÿ3=2�n ÿ k�

Z Z
If�x1 ÿ x2��y1 ÿ y2�4 0gdF̂i�x1; y1�

d
X

14 i4 k

�ei ÿ êk�IfXi 4 x2;Y1 4 y2g
( )

ÿ 2n
ÿ3=2

k

Z Z
If�x1 ÿ x2��y1 ÿ y2�4 0g

dF*k�x1; y1�d
X

k5 i4 n

�ei ÿ ê*k�IfXi 4 x2;Yi 4 y2g
( )

:

Next we must show that FÃk(x1 , y1) and F*
k(x1 , y1) can be replaced with F(x1 , y1) so we could

conclude

max
14 k5 n

����� ~Un�k� ÿ 2

Z Z
If�x1 ÿ x2��y1 ÿ y2�4 0gdF �x1; y1�

d n
ÿ1=2

1 ÿ k

n

� � X
14 i4 k

(
�ei ÿ êk�IfXi 4 x2;Yi 4 y2g

ÿ n
ÿ1=2k

n

X
k5 i4 n

�ei ÿ êi�IfXi 4 x2;Yi 4 y2g
)����� � Op�1�:

�13�

We showed in the proof of Theorem 2.1 that nÿ3/2[nt](nÿ [nt])(FÃ[nt](x, y)ÿ F*
[nt](x, y)) and nÿ3/2

{(nÿ [nt])S14i4[nt](eiÿ ê[nt])I{Xi4 x,Yi4 y}ÿ [nt]S[nt]5i4n(eiÿ ê*[nt])I{Xi4 x,Yi4 y}} converge
weakly to the same process, so in light of (12) and (13), it is heuristically clear that the limits in
Theorems 3.1 and 3.2 must be the same.
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